電電公社と「DIPS」開発をめぐる諸問題

木本 忠昭

1 データ通信の開始

（1）戦後電気通信の再建

第2次大戦による電信電話業の損害は激めて大きく、電報局の52％、回線の75％が失われた。電話も戦前の1,080万台の電話敷地が54万台に減少し、電話局も1/3が廃墟になったといわれる。この廃墟からの復興は、占領軍の専用線は別にして、資本不足などから還々として進まなかった。1949年、GHQは、事実上の命令であるマッカーサー書簡による「勧告」で電気通信省を成立させ、ついで1952年には日本電信電話公社が設立された。

電電公社は、翌1953年から第一次五か年計画を策定し、以後1977年まで第5次五か年計画を実施。国内電気通信網の構築を一手に引き受け、その成果は初期の電話事業での課題、一つは「電話の歴史」は「電話機械の歴史」という電話機械の解読であった。もう一つは時制通信の市外電話接続に時間がかかるものであった。前15分で通話できたものが3時間を必要1で、電話は「出んね」と言われたときもあった。「かからない電話の汚名」2を晴らすべく、日本の自立経済計画の一環として経済自立審議会が政府に勧告した電気通信に関する3ケ年継続の拡張計画（1951-53年）3につづいたものが、この53年からの計画であった。

<table>
<thead>
<tr>
<th>年度</th>
<th>第1次五か年計画</th>
<th>第2次五か年計画</th>
<th>第3次五か年計画</th>
<th>第4次五か年計画</th>
</tr>
</thead>
</table>

設備

<table>
<thead>
<tr>
<th>年度</th>
<th>第5次五か年計画</th>
</tr>
</thead>
<tbody>
<tr>
<td>(73-77)</td>
<td>1978</td>
</tr>
<tr>
<td>312億円</td>
<td>3020</td>
</tr>
</tbody>
</table>

投資額

（但し、1960-62年には改正第2次計画、71-77年に改正第2次計画）

＊東京工業大学社会理工学研究科技術経済分析講座

1中川靖造『NTT技術史』 東洋経済新報社1990p4

2 斎藤正義『私の物語』『通信』4-8、1952 P10

3 加入者は昭和26年度、7.5万、昭和27年度14万、昭和28年度16.5万で、市外線はそれぞれ7万キロ、18万キロ、20万キロをめざすとされた

4 占領政策は必ずしも日本の民主化を貢いだわけではなく、特に報道通信部門においては米国の戦後国際戦略に強く左右される面があったので、通信の「復興」には時期があった。調査課長であっ

た米沢渓が立会った1949からの通信復興設備計画15年計画などは、「駐留軍の実視照により一時中絶の妨なびきに至った」橋本一郎「新機械と施設局」『施設』7-9、1955 p27
前の電話積滞は、公社が発足した1952年度には、電話設置数18万の倍以上の39万が積滞していた（加入電話数は155万）。1967年度に加入数は1000万を突破した。しかし、積滞数はなお242万台ものあった。積滞解消問題は、第4次5ヶ年計画の終了時の1972年度末の需要予測を2000万台に修正し、かつ1958年からの第2次5ヶ年計画で掲げたものが一つの課題、全国自動即時化を第5次5ヶ年計画の終了年の77年までに延期させることで、ようやく73年以降から急速に解消していった。

全国自動即時化においては、電話機の改良や、アメリカ・ケロッグ社のクロスバー交換機の導入、東京・名古屋・大阪間を初めとする多重マイクロ回線の建設（54年）、進行波管などの部品の品質改良などが電気通信研究所で行われるなど、ようやく1979年3月全国の自動即時化が達成されることになった。第1次5ヶ年計画開始時（1953年）、わずか1回線だけであった市外ダイヤル回線は、1978年には170万回線になっていた。

この発展過程で見られる幾つかの特徴の一つは、アメリカの技術導入に依存しながらも技術研究、品質の追求などの先端的な研究が、電気通信研究所で精力的に行われたことである。そして徐々に、世界でも有数の通信関連の先端技術開発能力を形成していった。1948年8月に占領軍総司令部の方針によって、進む省電気検査所で分断解体されてつくられた進む省電気通信研究所は、電気通信公社の「通信事業の基礎的および実用的研究をすすめる機関として発足してきたが、1971年には進む省電気通信研究所、電気通信研究所の体制、翌年に新しく設置された電気通信研究所、1983年に厚生電気通信研究所と研究所を増設してきた。加えて1980年代にはソフトウェア生産技術研究所などの、いわゆる「機関別研究所」も加えられ、先端技術の個別分野に対応した研究所編成がとられてきた。研究所員は、1980年代初頭には約3100人を数えるに至った。しかも、後で見るようにその資金源は豊富で、国内有数の研究機関となっていった。

もう一つの特徴は、電話網建設には、1952年の公社発足から第5次5ヶ年計画終了時の77年までに累計13兆6000億、年平均にして5400億という膨大な設備投資があり、その関連生産・資材調達はいわゆる「電気ファミリー」と言われる企業群によって担われる構造を形成してきているのである。たとえば、1974年度には電気通信公社は国内通信機器のほぼ半分を購入しているが、ほぼ200社ともいわれる電気通信公社が調達する企業の、上下位4社の日本電気、富士通、沖電気、日立製作所は、全調達額の半分以上を占めた。1973年の日本電気の総売り上げの3割が電気通信公社向けであったように「電気ファミリー」の公社依存度は高かった。

この膨大な通信機器の需要を低くに、これらの企業群と技術開発と資材調達方式において、特異な関係をもつことである。電気通信技術はシステムであり、膨大な部品で構成される。たとえば、交換機のウェスタン系（日本電気、沖、日立が生産）とシーメンス系（松下電通）の混在などという。5

5通信研究所の前身の電気試験所の基礎研究を基礎にしたところ4号電話機の実用化研究は、日本の技術研究として大きな成果となった。関谷「基礎研究の過去・現在・未来」（2）『施設』10－10、1958。p15
6進む省電気試験所に文部省電波物理研究所と国際電気通信株式会社の技術研究所が加えられ、電話部門が商工省工業技術庁に移転され、残った部分が電気通信研究所となったもの
71949年に、電気通信省、52年に日本電気電話公社
8この割合は、年々減少していいくが、80年までは基本的な構造に大きな変化はない。なお、日立を除いた3社、日電、富士通、沖は飛び抜えて多い。
（2）通信とコンピュータ

1957年のソ連の人工衛星スプートニクの打ち上げは、米のアポロ計画による月の人類着陸にいたるまで米ソ間の宇宙開発競争を繰り広げにいたった。他方、ロケットの発達は、核戦略兵器体系の重点を弾道ミサイルに移行させた。人工衛星や兵器のミサイル体系の開発のために、打ち上げのための科学技術計算用や航空制御電子計算機などのエレクトロニクス関連研究開発予算が激増し膨張した。同時に、地球各地に配備された弾道兵器体系を管理、指揮するために通信が特別の重要性をもってきた。アメリカでは1950年代から、ミサイル開発に対応してCNW級の高出力送信機と高感度受信機が開発され、ミサイルを対策できる長距離レーダーがつくられた。早期にミサイル攻撃を対策するためにアラスカ、カナダ及び国境沿いにレーダ網が整備され、これとコンピュータを結ぶ半自動地上防空システム（SAGE）が構築された。これには、100億ドルが投じられ、全米19ヶ所のコンピュータが回路で結ばれた。これが大规模データ通信としては初めてのシステムである。以降、同様のシステムとしてSACCS（戦略空軍司令部システム）、BMEWS（大陸間弾道弾早期警報システム）、SPADATS（宇宙探知追尾システム）などが次々と開発された。SAGEを開発したIBMは、このオンラインリアルタイム処理の考え方をのちに第三世代コンピュータで高感度化していた。同時に、このシステムをモチーフにアメリカン・エアラインズの航空座席予約システムを開発した。

またこれとは別に1961年MITのJ.マッカーシーは電子計算機を共用する時分割（TSS）方式を提示したが、こうしたコンピュータと通信を結ぶ技術の格がますます明確にいたった。時分割方式は、GEが開発に力を注ぎ、1960年代半ばには、科学技術計算に会話型TSSサービスを提供するGEインフォメーション・サービスやタイムシェアなどが発足することになった。

これらコンピュータと通信の結合の新しい展開方向は、この後の軍事研究にもますます顕著に見られるようになる。たとえば1967年に行われた戦略課題研究では、兵器体系の通信システム研究に高い優先順位が与えられ、これはがけて、C³I（指揮、統制、通信、情報）プロジェクト、さらにはレーガン政権時代のSDI構想へのつながった。1969－1970年には、国防省高等研究計画局は、軍事研究ネットワーク、アルバネット（ARPANET）を構築して、全米主要軍事研究機関の中核コンピュータを通信回線で結び、たとえば核戦争によりネットワークの一部が破壊されても、残った

9「エレクトロニクス50年史と21世紀への展望」日経マクロウィ社 1980 p249
10アメリカ軍電信会社、大守啓訳「データ通信」東洋経済新報社 1967 pp13-15
コンピュータをつなぐ方法を探るプロジェクトを展開した。この方法はINTERNETの原型となり、軍事目的の通信ネットワークは通信の社会性という点から非軍事部門に波及し、コンピュータの利用に新しい形態を与えることになった。

（３）公衆電気通信法の改正と日本のデータ通信

コンピュータと通信の両方の側にとっても新しい領域となるコンピュータと通信回線の結びは日本でも始まり、まず大量輸送時代に入る運輸部門で1960年代はじめに本格化する。国鉄では1960年には「つばめ」や「こだま」などの座席予約システムMARS1を開発したが、ついてて日立のHITAC3030装置を採用して全国規模のMARS101の開発をはじめた。これは1964年2月には新幹線の座席予約システムとなり、ついてて翌年には「みどりの窓口」が稼働を開始した。

日本航空の座席予約システムは研究開始から3年後の1964年7月に、日本電気のNEAC2230を2台を用いて東京、大阪、福岡、札幌を中心に59台のキーセットを配置した国内線予約システムが稼働を始めた。

電話線をデータ通信に使用する試みは1964年施行の電気通信法に伴い、電気学会の「管理」下にあった。電気学会は、銀行など一部の企業にデータ通信としての利用を認めたものの、データ伝送用端末機器を制度化（1964年）して接続するコンピュータや端末機器に制限を設け、「企業の合理化、効率化を図るもののためは法律上解釈の許される範囲で」利用の基準を設定したが、計算サービス会社と一般企業との間は「共存共栄」として認めず、また公衆回線と自営の計算機との接続が認められなかった。ただし、コンピュータと通信回線の結びは、日本でも1950年代後半から提起されてきた問題であった。それが、例えば小野田セメントでは、電話回線でデータを送ることが認められなかった時代に、全国の支店工場と専用電気回線網で結び、受信した6単位電

12詳しは、第3部第6章2節「座席予約システム」を参照のこと。なお、1960年3月には近畿日本鉄道も、NEAC2203を用いた座席予約システム导入を行っている。
13設計時点で座席を4人掛けと定めていた。5人掛けと決定した後、別システムMARS102の設計が始まり、これは1965年3月に完成した。
14全日空と同じ予約システムを導入したが、これはHITAC3030を2台使った。
15国際線は、予約申し込みをテレタイプで受け、NEAC2230で一括処理するシステムが1966年7月に稼働、翌1967年に国際線用キーセットが開発され全国17ヶ所に49台が配備され、1970年5月に国際線予約システムJALCOMⅡが開始した。日本電気工業振興協会編『日本の電子工業』コンピュータ・エージ社1978年81頁
16なおIBMはこの年インスブルックの冬季オリンピック大会のオリンピック公式時計を担当した。
信デーブを中央に読み込みさせる方式を余儀なくされていた。

他方、コンピュータ産業はオンラインや時分割（TSS）へ展開を図るには公社の回線は重要な手段の一つであった。通信回線が電気公社のいわば「占有」の体制で、1968年に公社が全国地方銀行および群馬銀行のデータ通信サービスを開始したことは、公社以外のコンピュータおよび関連通信企業には、通信手段に著しい格差（換言すれば「障害」）があるように見えた。こうして1968年から、電気公社の通信回線開放の攻防が華々しく展開されることになった。利用規制を不満とする産業界＝産官庁と、伸び悩む電話収入に対して将来性に見いだすデータ通信の確立問題と公衆電気通信法の精神をからめて回線開放に反対する郵政省の対立は、政治問題となり、結局1971年5月の「公衆電気通信法の改定」となった。これにより従来からの特定通信回線に加え、公衆通信回線の回線サービスが生まれ、回線の企業間「共通利用」や、自己の契約した回線を他人に使用させる「他人使用」が可能になった。銀行などの各種金融機関の業務提携によるバンクインシステム、製造業と販売業間の販売在庫管理システム、運輸業者間の業務提携による席席予約システム（東京国内航空の座席予約システム：1972年）も拡大し、情報産業によるオンラインサービスなどがやって実現していくことになった。特定回線と公衆回線を相互接続する「公共接続」接続も郵政大臣の個別認可として可能になった。その後、共同利用や他人使用の許可条件、利用形態の規制も次第に緩和され、1982年の自由化でVAN事業が可能となった。

振り返って、電気公社自身のデータ通信について今一度その経過をみておこう。公社は、以前から、自衛隊のバックシステムや一部産業界のデータ通信の動きを背景に積極的な動きを見せ始めた。交通管理システムなどの公共システムの開発に乗り出したうえに、「データ通信」なるものを「回線接続の計算機でのデータ処理を含む」と解釈し17、1966年3月にはデータ通信事業の創設を決定、同年6月には郵政大臣にデータ通信サービスの認可を受け、1企業体もしくは相互に関係を有する特定の者の要望に応じてデータ通信網を設計・設置し、その網全体を利用者の用に供する第1種サービスと、相互に関係を持たない不特定多数の利用に供する第2種サービスを設けた。

1967年10月には「データ通信本部」を設置、従来の通信業務への調整を図りながらデータ通信業務の基本事項を検討し、1968年に7月には正式業務を開始した。最初の本格的なデータ通信サービスは、銀行間での為替取引を検討する全国地方銀行為替交換システムと群馬銀行のシステムであった。地方銀行は、銀行間の為替取引では郵便もしくは電報によらねばならず、都市銀行に較べて不利であったので、コンピュータによるオンライン処理方式の確立を急いだのである。群馬銀行システム

17 横石信『コンピュータネットワーク時代』コンピュータージー社1980 P12
18 新聞社としてのデータ通信分野での通産省と郵政省の対立は、「日本情報処理開発センター」構想にも現在の。通産省は、「オンラインリアルタイムシステム」に対応する言葉として「速係情報処理」とより、コンピュータと結合した情報産業の振興という観点から対話しようとしたのに対し、電電公社は「データ通信」として通信に重視を置いた。通産省の1967年3月の「日本情報処理開発センター」（仮称）の設立構想は、情報処理、とくに速係情報処理技術の開発と情報産業の先導を目的にすることがあった。この情報処理開発センターが電電公社と協力しての大阪万国博覧会での「速係情報処理」を行う計画は、電電公社以外の第3者が電電公社の通信回線を使用して通信を実現するという方針で、電気通信法に抵触するという問題点が通産省から出された。他方、電電公社の計画する全国地方銀行協会へのデータ通信サービスは、情報処理を伴う「コンピュータを含めた通信設備」の貸し出しということになり、これには「情報処理」業は「公衆電気通信法」の役務にないと通産省は問題にした。この対立の結果、地方銀行協会に対する電電公社のサービスは、「試験役務」となり、他方、日本情報処理開発センター構想は「速係情報処理」のサービスセンタの性格が改められた。以上日本電子工業振興協会編前書を参照。
テムでは、FACOM230-30を使用して前橋市の本店内のセンターと関東周辺25店舗を結ぶものであった。10月に始まった全国地方銀行協会のシステムは、加盟62行、4363店を結ぶものであった。このほかに1970年からは、科学技術計算サービス（DEMONS）、販売在庫管理システム（DRESS）、電話計算サービス（DIALS）という3種の公衆データサービスが始まり、以後自動車登録検査システム神奈川県をはじめとする緊急医療情報システム、生鮮食料品流通情報システム、宮城会計事務システムなどの行政機関でのプロジェクト関係システム、あるいは新全国銀行システムや信用金庫協会システムなどがサービスを開始し、1982年末には760のデータ通信サービスが数えられ、端末数も2万2000台に達した。

電電公社のデータ通信サービスには、電電公社がすべての設備をシステムとして提供するデータ通信設備サービスと通信回線のみを提供するデータ通信回線サービスがあり、さらにシステムの構築の仕方と回線の利用形態で、それぞれ下記のようなものがあった。

データ通信サービス

- **データ通信設備サービス**（利用者の注文によるシステム）
- **公衆データ通信サービス**（公社システムの共同利用）
- **データ通信回線サービス**（特定通信回線サービス（特定区間の回線提供）
- **公衆回線利用サービス**（電話またはラジオの利用）
- **新データ網サービス（デジタルデータ交換網利用、79年より）**
- **回線交換サービス**
- **パケット交換サービス**

経営的には、電電公社の当初予定では4年後に収支均衡するといわれていたが、電話計算サービスのように電卓の低価格化という事情もあって、多額の先端技術設備投資と需要はつりあわず、80年代に入っても毎年多額の赤字を計上した。しかも、1977年度まではデータ通信の事業収支は事業報告書に掲載されず、電電公社の赤字構造は住宅用電話のせいのみにされる誤いもあった。

2 電電公社のコンピュータ開発

(1) 日米摩擦と政府調達協定

ところで、60年代の終わりには、アメリカの自由化要求が強くなり、70年の日米繊維交渉は、厳しい局面を迎えつつあることを如実に示した。コンピュータに関しては、前章に見たとおりであるが、1969年にアメリカは、OECDに政府調達コードの提案を提示して通信事業の市場解放を要求する。その背景には、ニクソン・シェックに見られるような、アメリカの相対的経済的差異の兆しがあったことは元よりである。同時に60年代に軍需を対象に膨張したアメリカ電子工業界が、新市場を日本通信用事業に求めようとする意思もあった。

これに対して、日本の通信事業市場は当然ながら開放的ではなかった。例えば、1978年の東京ラウンドでの政府調達協定交渉でアメリカ通商代表部は政府調達市場として188億ドルを求めるのに対し、西欧は105億ドル、日本は電電公社の調達を除外した上で、わずか35億ドルを提示するにとどまった。

23
対日批判が強化になり、ITTやWEなどからなる企業代表使節団が日本に派遣され、電電公社との直接交渉となった。交渉は決裂したが翌年、大平首相の訪米を前にした政治折衝で、日本側は譲歩を余儀なくされた。提示額が上積みされ、1981年1月からの電電市場の完全開放が約束された。アメリカ側は、デジタル交換機やコンピュータの購入を強く求めた。これには、電電公社と日本電気、富士通、日立などの「電気ファミリー」が巨額の電話網建設投資費や資材調達費を媒介に、デジタル通信技術や光通信、半導体などの先端技術開発能力を形成し、日本の国際競争力を培ってきたことへの、アメリカ側の戦略的対応策であったといわれる26。

これまで電気通信サービスに必要な交換機や宅内装置、搬送無線装置、綫路等の設備をすべて直接もしくは「メカを指導して開発してきた」27電電公社としては、コンピュータの開発は形式的には通信技術の技術の発展上の展開ではあったが、実際には先に述べたような通信市場をめぐる日米間の主権争いであり、キー・テクノロジーとしてのコンピュータ開発への郵政省を中心とする電電公社の資金とマンパワー28投入政策によるものであった。この頃の計算機市場は、周知のように米国IBM社の独占場で、同社は米国計算機設置約7兆7000億円中の70％を確保（1968年）し、2位スプリーランド社（同7％）、3位ハネル社（同5.5％）を大きく引き離していたばかりか、ヨーロッパでも内装設設置金額1兆6000億円（1967年末）のうち58％を占め、2位のイギリスICLの9％を著しく凌駕していた。

コンピュータと結合するデータ通信の一部門としてのTSS（時分割）産業でも、米国勢が世界を支配する様式で展開していた。1970年前後には米国でのこの分野での企業は約150社に上り、GE社が米国内シェアの約40％を占め、IBM社の子会社のSBC29が19％を占めていた30。

日本国内でも1971年11月にはGE社と（株）電通によるMARK I31、翌年の4月にはIBM社のCALL 36032などがTSSサービスを開始するようになる33。

こうした情勢下で、国内産業保護というイギリス政府のICL支援策やフランスの国家政策との両方の期待が日本でも模索されたわけである。ただ、コンピュータに関連しての国際先端技術をめぐる国際的な争いの関連で言えば、日本では確かに一方では、前述のように日米間の摩擦という側面があったが、これに加えて産業界と電電公社の争いが加わった。いわば2重の展開でもあった33。
ここでは、国際的レベルでの企業間競争と国家の介入、そして先端技術の開発の形態と可能性、そして公共的な（通信）技術のあり方の問題が絡んでいたのである。

データ通信という新たな通信形態が出現し始めたことに対応する日本での電気通信の政策的展開であり、「データ通信の分野で公社は、先導的な立場をとりつつ、我が国の関連産業の発展に寄与しようとする」ものとして、コンピュータと関連しての新たな通信技術での体制づくりが要請されるとと解釈されるのである。

（2）DIPSコンピュータの開発——DIPS-1, 11/10, 11/5
＜MUSASINO-1と電気通信研究所＞

さて、電気通信が電子計算機の研究を行ったのは周知のように東京大学の後藤英一が着想したパラメトロンを素子に用いたMUSASINO-1があり、1970年代に入って初めて着手されたわけではない。当時、真空管方式やもっとも有望視されていたサイオード論理と磁心シフトレジスタ方式ではなく、パラメトロンが採用されたわけは「信頼度の高いこと」「優秀な国産の着想を実用化することは研究所の使命の一つであると考えた」とされる。また、「さらに、パラメトロンは位相弁別方式であり、吉田初代所長は電気試験所第2部の類位相弁別電信方式を研究し、帝国海軍のため独創的な多相変位電信方式を完成した。パラメトロンは多相変位方式と共通の原理。この伝統を新しい形で受け継ぐことを志したものの、」機能をはじめ諸先輩の支持、渋沢忠男、西村誠信の電信電話株式会社社長と機能の提案による財団法人パラメトロン研究所の設立もその現れ」といわれるように、技術的なものと社会的な動機、環境が関与していた。社会的状況としては戦前再出発した電気通信研究所の研究動向が如実に、その間の事情を示していた。同所が、そもそも情報処理、およびそれに関連した電子回路の組織的研究を開始したのは、1951年2月1日に基礎研究部門伝送研究科に伝送基礎グループがもっけられて以来であった。先に見たように、戦後再建によって1949年6月1日に電気通信省電気通信研究所には、2つの実用化部門、1基礎研究部門（物理科、化学科、伝送研究科、無線研究科）が新設され、伝送研究科では「時分割通信と帯域帯域伝送が重要」で、これらの組織およびテーマは戦後の国策によって荒廃した電気通信を急速に復興することを目指していった。このような環境で視野を広げるのは無理であった。そこで、1950年8月末～3月間、基礎研究部の前田憲一が米欧にて実地調査、その経験が「基礎研究部の改組織、研究方針の改訂」につながり、「欧米視察の結果・時分割通信方式、帯域帯域通信方式のほかに、将来を見越して伝送基礎グループを設立することになった」とし、これが、1924年（大正13）年1月1日起こっていた事情につながっ
た。また、戦時中にも、電気試験所第2部では、競馬用に制御器、計算機の研究が行われ、これは戦後、研究所の設立までに万能計算機の研究としてつながっていた。

第1部では、電気的微分解析機の研究が行われ、研究所設立時には、数値計算サービスが基礎研究部門で行われた。1950年には数値計算グループのためには、プロの解法機アイソグラフを研究試作させた。こうした状況下で、アメリカのベル研で、戦前に相当大型化の制御器計算機の製作に成功したこと、ENIACが運転を開始したことの情報が伝わって、伝送研究所では電子計算機に対する関心はきわめて深いものがあったが、これが国産技術という政策的観点と結びついて、先のパラメトリックスによる電子計算機開発路線となったのである。

MUSASINO-1は、1959年、情報局の機材の発注割り当てに関する計算を行ったが、以後電子計算機の研究は打ち切られ、MUSASINO-1号の完成の次の情報処理方式としての研究目標としては、自動料金会計方式、略称CAMA、Centralized Automatic Message Accounting方式と時間帯域登録方式の2SS、Zeltzonerzehler方式に変わっていった。ここにも電気通信研究所の社会的役割からくるところの、研究動向が強く社会的に左右される事情が見えるが、これについては別に稿を起こしたい。

＜データ通信とコンピュータ開発＞

さて、前に述べたように、1968年には電子通信事业者、電子計算機と通信回線を経び全電網などの計算機オンライン方式を設置していたが、このシステムに使われた電子計算機は、民間の電子計算機メーカーによるものであった。民間電子計算機は、製造会社毎に仕様や企画などが異なりソフトウェアやハードウェア、あるいは操作方法で統一性はなかった。全国的な通信網を敷設する立場からは、こうした統一性の欠如は大きな問題であった。元来、電子計算機以前の段階から、規格統一は、電気通信社の強い指向性であった。また、コンピュータ製造会社の立場からは、通信回線との接続は、十分な経験をもつものではなく、システムとしても本体と周辺装置に対する考え方（通信網からは多くの周辺装置を必要とするなどの）にも、当然ながら違いがあった。

毎月電気通信サービスを「迅速、正確、経済的」に行うために、技術的にはこうした事情から、データ通信のための情報処理システムの研究が、提起されることになったのである。これが、DIPS（Dendenkoya Information Processing System）という総合、そのための電気通信社独自の電子計算機研究が、1960年会社が、データ通信サービスを認可すると電気通信研究所によって始まるのである。

34企画編集委員会編、前掲1965P123
35MUSASINO-1は、パラメトリックスを使って、1957年春に32語の容量で動いた。翌1958年には256語に拡張さされた。論理設計はパラメトリックスのためなく新しく行ったが、ソフトウェアは、イリノイ大学のアイソラクとほとんど同一のものを採用し、プログラム、サブレーンの整理がイグリミングのルーチンがなかったのでこれは作製、1960年には浮動小数点インデックスレジスタの使用を一斉にエンプレントともいうべきFACで完成。1961年にはFORTRANのようなコンパイラ
AUTOCODEが完成している。1960年にサービス向上のため同じ方式で記憶容量1024語、速度2.5
倍の実用機として、MUSASINO-1B機が設置された。
36高橋茂は、米国ベル研で電子計算機が、通信部門と切り放されて行われなくなったことをあげている。高橋茂、前掲書参照。
図 DIPS開発の初期の経緯

はじめは、ハードウエアとしては、市販の中型機（日立製）を用いてのソフトウエア研究が行われた。これは、DIPS-0と呼ばれた。DIPS-0では、システムのためのいわば模型づくりで、TSS用のソフトウェア開発として、BASICによるソフトウェア（1968年完成）から始まり、FINALのソフトウェアを作り上げている。次の段階のDIPS-1計画は、計算機としては商用機をめざすものとして、その外部条件の検討も1969年11月から行われ、翌1970年6月の「DIPS外部条件版」を経て、同年10月に最終的な外部条件が決定された。これに基づいての具体的な研究が日本電気、富士通、日立製作所と行われ、研究所内試験用としてDIPS-1Lが1971年4月に搬入され、1971年4月に搬入され、実際の実装は1972年3月に搬入されている。

DIPS研究実用化の流れ

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DIPS-0</td>
<td>DIPS-1</td>
<td>DIPS-11/10シリーズ</td>
<td>DIPS-11/5シリーズ</td>
<td>DIPS-11/5EXシリーズ</td>
<td>DIPS-V20</td>
</tr>
</tbody>
</table>

39 安田裕吉郎『DIPS共通ソフトウェアの現状と今後の方向』『施設』34-3、1982P22
40 2台のプロセッサが128Kバイトのメモリを共用するマルチプロセッサ構成に改造したものを使
41 電磁気工学『DIPS計画について』『施設』22-1、1970PP12-参照
42 「DIPS研究実用化の歩み」1992P1
1967 DIPS-O：ソフトウェアの研究を主眼、市販中型計算機を利用した実験システム。シン
グルプロセッサの使えるBASICと2台でのマルチプロセッサでのTSSが使われるFINALの
2段階。通研内部や雑誌に掲載
～1968秋からDIPS-1：大規模実用化をめざす。「我が国を代表する超大陵電算機システムの実用
化をめざし、製造技術を含む日本の電子計算機技術の総力を凝集するため、日本電気、日
立、富士電の3社と共同研究体制」。目標は、超LSIの部分導入、単一プロセッサの能力
拡大（国産の3倍化）、データ通信用大型計算機の実用化（マルチプロセッサ方式の採用、
主記憶容量の大幅化、チャネル数や通信制御装置当たりの接続回線数の増加など）、可
能な範囲の標準化（アーキテクチャや命令体系などのソフトウェアの標準化、情報表現形式、
I/Oインターフェイス、システム操作など）、新通信方式との親和性、信頼性の向上
DIPS-11：ICメモリ、LSI論理素子など新部品の導入（DIPS-1はコア・メモリー16Kビット/チップ、
モデル30は1Kビット/チップ）。
→モデル10、モデル20、モデル30の性能の異なる3機種に（後DIPS-11/10シリーズと呼
称）。1975-76年に実作機順次商用システムに導入。
…………1975年末時点で電通会社のデータ通信システムは48システムになる（公衆データ通信
システム20、各種データ通信システム28）
DIPS-11の改良
　第1次改良：（1976—）ICメモリの高集積化、4倍の集積度（16Kビット/チップまたは4K
ビット/チップの採用）、データ転送制御方式を改良、高速化など
　第2次改良：これはのちにDIPS-11/5シリーズと呼ばれるものとなる本格的改良。
1974国産電算メーカの新シリーズ発表、IBMSNA（システムネットワーク体系）を発表。2年後には国
内メーカもコンピュータネットワーク体系の発表が相次ぐ。通研→コンピュータ相互の接
続方式の標準化のためにDCNA（標準データ通信網アーキテクチャ）研究を3年計画。
（1976IBM3033,1979年IBM4300シリーズ；→64Kビット/チップの高性能素子など、新ハードウエア
の採用、機能分散による処理能力の向上、性能レンジの拡大など)
DIPS VLSIプロセッサ計画
　20Kゲート/チップクラスを用いて、中央処理部、周辺制御部、通信制御部の主要を構成する
VLSIの試作と2年半ほどに実用化。DIPS-V20の実用化で84年3月に商用導入。256Kビット/チ
ップLSIを世界に先駆けて採用。
V-30はV-20の2～3倍の性能向上を目的、86年3月に商用導入。
DIPS-11/5Eシリーズ
DIPS中大型機11/6シリーズの次期システム計画。1979年より。情報処理センタの処理能力
増強と柔軟なシステム構成。大型化による一応の高信頼性が必要される。→光ルーブ
システムによるプロセッサ間接続を可能にする複合システム、ハードウエアの最新化、
ダイアデック構成のプロセッサ構成。→→モデル5E,15E,25E,45E
DIPS-11/5EXシリーズ
1986年半ばから。5Eシリーズの後継機の検討、性能1.5～2倍化。市販製品と同等の価格
性能比を維持しユーザのプログラム資産の継承と発展。ハードウエアは製造会社のものを

28
積極的に活用。
DIPS計画の終了：共同研究は1992年3月に最終報告会（25年間）
MIA（Multivendor Integration Architecture）計画
1990DIPSの以後の検討
1992年4月DIPSの実行部隊は再編成→通研（情報研、ソフト研、境界研）とネットワークシステム開発センタの関連部門が情報システム本部に集結、他にNTTソフトウエアなどに

その後、商用のDIPS-1は、第1号機が1972年8月に東京第3科学技術計算システム用として芝電電話局に搬入された。以後DIPS-1の改良が図られ、DIPS-11/10シリーズ、DIPS-11/5シリーズ、DIPS-11 5Eシリーズ、DIPS-11 5EXシリーズ、それV20、V30、V30S、V30E、V30EX、V30SX、V40SX、V40EXが開発されていった（図参照）。

以上が初期の経過であるが、現在の実質的システムDIPS-0の経験に基づいて、日本電気、富士通、日立の国産メーカー3社と共通で、ソフトウエアも含めての共通アーキテクチャーによる高性能計算機を開発するという、このDIPS-1共同研究委員会は、正式には69年に始まったが、試作ハードウェアは71年3月までにという、時期的に厳しいものであった43。

図1970年前後の大型電子計算機の性能比較44および集積回路比較

この時期は、IBM/360をターゲットにした通産省の大型プロジェクト方式による「超高性能電子計算機」の開発が行われていた。この大型プロジェクトとの重複は当然問題になった。しかし、結局、入出カウンターエフェイスだけを共通にし、日本電気が通産省の大型プロジェクトで開発したNMOSメモリをキャッシュメモリに採用して、性能はIBM/370-158を多少上回る程度のものが目標として、1971年6月〜9月に完成された。国産機との比較では、当時国産最大の計算機F230/60

43高橋茂、前揭 p81 高橋茂は、DIPS計画に携わった当事者として、この計画に詳しい。以下の記述にも、本書に負うところがおおい。
44関口良雄他「DIPS計画について」『施設』22-1、1970 P15
の約3倍の性能を持ち、かつオンライン処理を目標とした設計であった。
さて、極めて納期が厳しく追及されてDIPS-1Lができ、まず日立と富士通にDIPS-1Fの製作が依頼され、ついで日本電気にも1971年11月にDIPS-1Cが発注された。
1972年秋から始まったDIPS-1の改良をめざす次期DIPS開発の検討においては、通産省計画との重複問題から各企業も苦慮し、富士通・日立と日本電気の間で考え方の違いも見られた。市販品との二本立てを避け、IBM370アーキテクチャに揃えるという富士通・日立グループに対して、電電公社は独自アーキテクチャを強調し、結局、アーキテクチャとインターフェイス仕様を一本化し、個々の装置は各社の事情を尊重するということが基本となった。こうしてメモリのIC化にしたDIPS-11/10シリーズが1975〜1976年に完成し、その後、DIPS-11/5シリーズが1980年に製作されて、さらに11/5E, 11/5EXシリーズに発展した。この過程で、マルチプロセッサ、ローカルメモリ、論理アドレスなどを装備した方式が実用化された。素子でもNMOSICで世界レベルを達成するなど多くの開発がなされた45。毎分15000行の最高速度のラインプリンタや大容量磁気ディスクなども開発されている。83年にはCMOSチップあたり20キロゲートのVLSIでDIPS-V20が製作された。
共同開発で製作されたDIPS-1,11/10,11/5などは、各社は各自のハードウエア技術を使用することができ、HTAC8700Mシリーズ、M350などの各メーカーの市販用機種との共通化を計ることもでき、DIPSの開発が各方面市販機種の共通的な役割を果たした面もあった46。
LSIの開発は1975年から始まっているが、これも通産省の指導による超LSI研究開発プロジェクトと時期的にほぼ重複していた。コンピュータ本体開発のDIPS-1,DIPS-11開発計画が、同じく通産省のプロジェクト、そしてひきつづいてのIBMシステム/370を目標とした超高性能計算機技術研究組合等のプロジェクトともほぼ重なっていたし、それぞれの開発ターゲットも同じであっ、開発補助金は、通産省側が直接的な開発費としては100億円（大型プロジェクト）、570億円（超高性能）、290億円（超LSI）であったのにたいし、電電公社のDIPS計画は、400億円（DIPS-1）、400億円（DIPS-11）、500億円（DIPS-11/5）と巨額であった47。電電公社の支出は発注されるが、両者の比較は直接的にはできないが、相当な額であったことは否定できない。通産省と電電公社の「両者の間に挟まったメーカの技術者は双方から声がかかった箇所」といわれる事態も戦略的産業としての通信とコンピュータへの通産省と郵政省の主導権争いの実質的な現象であった。貿易発表時期について企業の発表が公社より早くなることは全社が難い、その逆は通産省が極度に厳しいという事態は単なる管轄省の面子的なものにとどまらず、DIPSと市販機とのハードウェア設計の共通化が進めば進むほど企業を深刻に悩ますこともあった。
DIPS計画は、1980年以降、DIPS-11/5E,5EX,Vシリーズと発展したが、NTTにおけるシステムのマルチベンダ化の推進と処理情報技術の成熟に伴ない、1992年3月で25年にわたるプロジェクトは終結した。コンピュータとしてのDIPSは、DIPS-1完成後に、電電公社の社内標準機としてデータ通信サービスとコンセントシステムに用いる方針が決定され、労働省、社会保険庁、郵政省、運輸

45「科学新通信情報」1990年2月22日号
46「各社での対応の仕方や、「寄与」の度合いはメーカーによって一様ではなかったということよりも多い。
47「報文献情報」1990年2月22日号。通産省の補助金等の優遇政策については、前章を参照されたい。開発プロジェクトへの直接的な補助以外に税制上の優遇措置など全体を加えれば、もちろん通産省を通じた補助政策の方が上回る。
48高橋茂 前掲 p86
省、国税庁などの官公庁の大規模システムや全国地方銀行為替交換システム、さらに医療情報システムなどの小型システムにも使われていた。

またDIPS計画に加え、1977年には標準的なネットワークアーキテクチャとして、DCNA（Data Communication Network Architecture）の開発を開始したほか（下図参照）異機種間接続での標準化問題などにも取り組まれたが、こうした異度機種接続問題は、通信体系の展開からすれば当然の課題であった。

図 异機種計算機間通信実験⑩

3 電電公社の開発の役割と性格

（1）データ通信その後と民営化
1980年代に入ると、電電公社はますます強く自由化の波にさらされることになり、1981年6月22日臨時第2特別部会は、電電公社の合理化にかんして「経営の効率化を促進するとともに事業運営の合理化、組織の活性化を図るため、現行公社制度の在り方、民営化等を含め、経営形態について当調査会において今後抜本的に見直す」との答申を出した。同じとき産業構造審議会情報産業部会の答申でも、「通信回線利用上での制約、通信回線利用料金体系（遠近格差撤廃の全国一律料金制度）、電電公社のデータ通信設備サービスと民間企業との競合（官民の的確な役割分担すなわち電電公社は民間との競合を回避し、公共的・全国的・技術先端的なサービスに限定し、しかも民間で十分サービスしやすい段階には渐次民間に移譲）」が自由なオンライン情報処理を妨げる3要因とし

⑩戸田巌『データ通信技術の開発』『研究実用化研究』第35巻第9号p863
（2）技術導入と「日米摩擦」のなかでの開発先導

国内の電気通信網の構築作業を通じて、日本の電気通信の技術と体系を建設してきた電電公社のやり方の一つはメーカーとの「共同開発体制」であった。電電公社自体は、1963年から始まった第3次5年計画以降には、本格的な技術開発が始まり、それに基づいての超多通信伝送方式、電子電話交換方式、衛星通信方式などの大型実用化の開発体制を強化してきた。データ通信を目標にした7年計画ではさらに「研究実用化体制の強化」をはかり、研究所人員も1970年の約2350名から3000名体制となり、研究所を武蔵野、横須賀、茨城に分割し、研究開発本部が統括の体制となっ

た。文字どおり実用化のプロジェクト的性格が強まり、1950年代には比較的自由な研究環境も管理体制が強化されていった。

従来、交換及び伝送などの電気通信設備においての電電公社とメーカーの共同開発のやり方は普通、「機器内部分担方式」というもので、共同研究参加各社に技術開発すべき部品を割り当てることで、共同研究の推進を図ることに成功してきた。この手法は、電電公社の定める厳しい仕様を要求されたものではありませんっても、結果的には企業は開発困難な課題に取り組み、その成果を自社商品開発に生かすことになった。

コンピュータ化においては、共同研究の成果を反映して作成された仕様をもとに、参加メーカー3社は試作を実施したが、この試作機がメーカー各社の商用主力機種の開発計画や新機種発表に少なかれ影響を与えた。たとえば、電電公社は先に述べたように「世界最高水準の大型機」としてDIPS-11/45を1981年4月に発表したが、その17月後の5月に富士通は「世界最大、最高速の超大型コンピュータ」M8300を発表した。メイクは、本体装置に関して、DIPSと市販機との設計共通化を進め、同一ラインで生産し、量産効果をあげる努力をした。

DIPS最終に伴う研究体制の再編成は、研究所の本体系のソフト・ハードは1985.9月に情報通信処理研究所とソフトウェア情報技術研究所（1984）に分かれた。前者はさらに情報通信網研究所（1991年7月）に、後者はソフトウェア研究所（1987年7月）になった。またW5系は1985年9月に複合研究所をはじめ、NTTソフトウェア（1985.7）、DNSエンジニアリング（1985.5）となり、複合研究所は1987年7月には、オープンシステム開発センター、ネットワークシステム開発センターになった。他方データ通信本部は、1988年7月にNTTデータ通信になったほか、社内情報システム開発センター（これはさらに91年に情報システム本部）等となっている。なお、NTTのDIPS関係技術者は約5400名もいる。前掲『DIPS研究実用化の歩み』参照

32
DIPS計画中のLSI計画の目標設定は、企業から見れば「難しいけれども不可能とはいえない規模」で適切であったという。開発技術の水準も、国内でみれば先端を凌ぎ、企業の水準を押し上げた。武蔵野通信研究所では、超LSI開発用のX線露光装置の開発はもとよりのほか、ガリウム・砒素を用いた「世界最高速度電力性といわれる論理回路」の試作も行われた。開発経費も先に見たように巨額が拠出された。その意味では、電気公社（電気通信研究所）は、メカの技術開発の先導的役割を果たした面がある。しかし、この開発体制もDIPS計画が、IBM360を目標としたように、あるいはIBMの「F3計画」なるものに触発されて急速浮上した超LSI研究開発プロジェクトに端的に代表されるように、日米摩擦に伴う国内市場確保政策の枠内での、そしてその意味では時期的性質の強いものであった。DIPS計画には技術的には、第2部第2章で指摘したような問題点も出たが、開発のあり方全体としては「共通開発」とはいいえ、電気公社の「独自の構築」を要求する筋路のもとに展開されたものであったといえよう。日米経済摩擦の展開に伴って電気通信研究所内における研究体制も戦後しばらくの比較的自由であったといわれる研究体制も実用化研究の方向性へ変化していたが、通産省と郵政省の技術政策の問題点や、企業間の技術開発の調整と電気公社自身の研究のあり方の問題を示すものでもあった。たしかに、40年代末にわたっての電気公社とメーカーとの共同研究としてのDIPS開発は、日本のコンピュータ開発技術がハードウェア面において急速に日米技術追い上げる時期での、大量の関係者を「動員」しての「共同研究」であり、結果的には関係者が評価するように日本のコンピュータ技術者を育成する一つの意義ある舞台であったといえる。しかし、全体の大勢からみれば、先端技術開発は、ますます巨大な投資を必要となり、電気公社自身も80年初頭には膨大な赤字をかかえることになった。赤字を発足以来、電話使用料の切り下げなどを進めてきたうえ、設備料を収入として計上せずに資本剰余金に計上することによって拡大されてきた。また赤字のデータ通信部分は計上しないというやり方も、赤字発生の構造を白日のものに暖しくない形となり、技術の展開方向の全容を示しにくい形となった。巨額の先端技術開発費の負担構造のあり方が問題を残したといえよう。同時に、巨大な経費を要する先端技術の開発を可能にする社会的形態の問題、そして開発におけるメーカーと国家ないし公共的な機関の共同のあり方に問題を残したといえよう。

51高橋茂 前掲p86
52南澤宣郎『コンピュータネットワーク時代』コンピュータ・エージ社1980 P202
531955年にはすでに技術研究合理化が追求され始めている。石川武二「技術研究合理化のための新機関について」「建設」7-9、1955P20
54本稿は、情報処理学会での日本のコンピュータ史に関する著名作業の一貫として稿を起こしたものの元になっている。従って、その稿と本稿には共通部分があり、同時に本稿の一部には、著述検討過程で行われた同学会の歴史委員会のメンバーのご意見も反映していることを付記し、そのご意見を下記のことに謝意を表するものである。